Medicinal Value of Domiciliary Ornamental Plants of the Asteraceae Family

Ishan Saini1, Jyoti Chauhan1, Prashant Kaushik1,2,3,*
1Department of Botany, Kurukshetra University, Kurukshetra, Haryana, INDIA.
2Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, SPAIN.
3Nagano University, 1088 Komaki, Ueda, Nagano, JAPAN.

ABSTRACT
Gardens are unaccomplished without the showy, pricey investments of ornamental plants. Ornamental plants, especially the flowering plants, have a significant impact on human life. They offer fresh air to the surroundings and release the negativity from the environment. Ornamental plants intrigued humans with their alluring odour and unique. Besides this, many ornamental plants have other economic uses other than just decoration or traditional customs which has been discussed. Many plants are edible and used in several kinds of beverages as medicinal values. Important domiciliary plants that belong to Asteraceae with both ornamental and therapeutic benefits are reviewed in this paper, namely, Calendula, Echinacea, Achillea, Acmella and Tanacetum. These plants possess a high nutritive value and can be cooked or consumed as salads. With numerous pharmaceutical activities of these plants, we hope that this review will bring awareness for their alternative use.

Key words: Edible flowers, Medicinal ornamental plants, Floriculture, Horticulture, Alkaloids, Essential oil.

Correspondence
Dr. Kaushik Prashant
1Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València-46022, Valencia, SPAIN.
2Nagano University, 1088 Komaki, Ueda, Nagano 386-0031, JAPAN.
Email: prkaus@doctor.upv.es
DOI: 10.5530/jyp.2020.12.2

INTRODUCTION
Ornamental plants can provide multiple profits with regards to environment beauty, economy concern and human lifestyles.1 Because of beautiful flowering and lovely attractive foliage, ornamental plants are being grown in homes, workplaces, institutions, etc., to embrace the landscape.2 And also floriculture crop products are being exported to countries like the USA, Japan, the UK, Netherlands and Germany. Floriculture has opened an extensive opportunities for jobs, especially to plant breeders. Many flowers like lotus, hibiscus, rose, pionia, sunflower, etc., are used by devotees for spiritual enlightenment to different gods and goddesses.3 Growing ornamental trees can help in reducing the temperature. Nycanthes arbor-tristis, known as night flowering jasmine is a good tree to be in lawns, which have white flowers with orange stalk, being used as ‘gajara’, ‘poonja’ and in Ayurvedic medicines.4 Ornamental plants attract pollinators which can feed them through nectar present in their flowers that has high nutritive value for humans too.5 Floriculture as a specialized profession, has started in last two decades and is giving tough competition to world trade against other developing countries. Many ornamental plants are being used as indoor for spreading freshness inside homes, hospitals, etc. It has been noted that patient having plants inside their wards recover faster. Plants and flowers have long-term encouraging and constructive effects on human minds. Indoor air pollutants are micro particles that are hard to eliminate physically, but indoor plants can do this tedious job efficiently:6 Hedera helix, Nephrolepis exaltata, Anthurium andraeanum, Acalanema modestum, Areca lutescens, Ficus, Chrysanthenum leucanthemum, Syngonium podophyllum, Chamaedorea elegans, Dracaena marginata, D. dendriiana, Epipremnum aureum, Cleopatryum comosum, Sanseveria trifasciata, Philodendron, Spathiphylunm, etc., are some ornamental indoor plants those have specific volatile substances that can eliminate formaldehyde, ammonia, benzene, xylene, carbon monoxide, chloroform and other toxic compounds in air.7

Despite the increasing interest of ornamental plants, some of them are also cultivated for their medicinal use as they have many bioactive compounds like phenolic compounds, carotenoids, antioxidants, essential oils and other secondary metabolites.8,9 Ornamental plants like Ocimum sp., Nicotiana sp., Ixora, Aloe vera, Agave, etc. and ornamental flowers like roses, nasturtium, hibiscus, marigold, Calendula, etc. are commonly grown in homes which also have many medicinal applications. Along with this, remedies from plants can be much cheaper and protect against free radicals without any side-effects than medicines formed by pharmaceutical companies. Like Carnations, which has a reputed status as an analgesic as well as an antioxidant.10 Plants and Dahlias are used in making puddings, cupcakes, pastries and other bakery products. Dahlias have antibacterial and antiviral activities.11 Ornamental flower-like Tagetes erecta (Family: Asteraceae), mainly used as garden flowers, in garlands, decorating homes, banquets and can be used as an analgesic as well as an antioxidant.12 Members of Asteraceae family

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.
having beautiful yellowish-white flowers used in beverages having anti-
obliviant properties as well as in curing stomach ache.11
Herbalists can tell the medical benefits of the particular plant. Some peo-
ple, may not have a proper degree can understand the benefits of plants
growing naturally around them. So this paper is comprised of some of
the ornamental plants which are beneficial for medical purpose and
other economic uses considering floriculture as a different opportunity
to sell more products. Here, we have discussed five medicinal plants of
family Asteraceae, namely, \textit{Calendula}, \textit{Echinacea}, \textit{Achillea}, \textit{Acmella} and
\textit{Tanacetum}.

Following are some ornamental plants discussed which are essential as
floral crops plus have medical practicalities.

\textbf{ORNAMENTAL PLANTS}

\textbf{CALENDULA OFFICINALIS L. (POT MARIGOLD)}

\begin{itemize}
 \item Family: Asteraceae (Sunflower family)
 \item Main use: Garden flowers
 \item Flowering period: August to November
\end{itemize}

\textbf{Scientific Classification}

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Plantae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division</td>
<td>Magnoliophyta</td>
</tr>
<tr>
<td>Class</td>
<td>Magnoliopsida</td>
</tr>
<tr>
<td>Order</td>
<td>Asterales</td>
</tr>
<tr>
<td>Family</td>
<td>Asteraceae</td>
</tr>
<tr>
<td>Genus</td>
<td>Calendula</td>
</tr>
<tr>
<td>Species</td>
<td>officinalis</td>
</tr>
</tbody>
</table>

\textit{Calendula} which is native to Southern Europe, is herbaceous annual plant
mainly grown in late summers to early winters that are highly branched
with hairy stem and reaches up to a height of 80cm. The plant can grow
in any soil and needs partial to full sun for flowering. Butterflies and bees
are attracted to their dazzling orange flowers. Leaves (6-15cm long) of
the plant are alternate, lanceolate, hairy from both sides with wavy mar-
gins. The inflorescence is capitulum of 5-8cm in diameter, with single
row of ray florets at periphery around the central tubular disc florets.
Florets are aromatic and give pungent spicy flavour to the food items
while the leaves have a bitter taste. Fruits are thorny achene.

\textit{Calendula} is an ancient plant used as both ornamental in cottage
botanical gardens and cemeteries since the 12th century as well as medicinal
uses. \textit{Calendula officinalis} Linn. has a long history of usage by the folklore
system, because of rich ethnomedical values. \textit{Calendula} flowers are of-
ten used in skincare.14 Leaves and flowers are an excellent source of skin
diabetes and for skin burns. The flowers have also been used as a source
of medicinal ingredients, widely used in homoeopathic medicine for the

treatment of many diseases for centuries.15 \textit{C. officinalis} has high eco-
nomic value as herbal medicine and has been approved recently for food
use in USA and appears in the Food and Drug Administration (FDA) list
of generally recognized as safe (GRAS) substances.16 Studies had shown
various pharmacological activities viz. nephroprotective, hepatoprotec-
tive, hypoglycemic, hypolipidemic, antioxidant potential of \textit{C. officinalis}
in experimental and clinical models. Therefore, the correlation between
phytochemical ingredients associated with pharmacological activities
needs to establish to maximize their therapeutic applications in mammals.
Plants were used by the soldiers during the American Civil War for
quick recovery of wounds. \textit{Calendula} has anti-inflammatory, anti-oede-
matous, anti-Tumor-Promoting and anti-oxidative properties.17 Europeans use leaves as diaphoretic and resolvent while the floral parts are used as
antispasmodic, stimulant and emmenagogue.18 The decoction of the flow-
er was earlier used for treating measles and smallpox and suppression of
menstrual flow.19 In India, \textit{Calendula} is often used for curing cut, burns,
rashes, dry skin, varicosis and dermatitis.20 (20 Maryland, 2011). Sesqui-
terpenes and saponins extracted from the plant can be used as against
viral infection and mutagenic compounds like benzo (a) pyrene.21 T-
murol, α-humulene, α-thujene, α-terpeneol, α-gurjunene, aromaden-
drene, 1,8-cineole, δ-cadinene, γ-cadinene, β-pinene, β-caryophyllene,
Myrcene, Sabine, Nonanal, Bornyl acetate etc. are other compounds
which are extracted from the plant and therapeutically important.22,23
Growing Calendulas is very good for the ground-cover, flowerbed
edges and in containers. Some people also make tea by using flowers.
The plant is very beneficial for skin repair. Dye also extracted from the
flower for colouring fabrics. So it is a critical economic plant to grow. The
pharmacological activity of \textit{C. officinalis} is presented in Table 1.

\textbf{Antioxidant activity}

\textbf{Plants} are the natural reservoir of antioxidants that inhibit the oxida-
tive stress created as a consequence of the production of free radicals
or ROS (reactive oxygen species). Plants produce low molecular weight
antioxidant (such as Vitamin C, Vitamin E, phenolic acids, etc.) and high
molecular weight secondary metabolites (phytochemicals) against the
oxidative stress. These antioxidants are served as a potent free radical
scavenger and play a significant role in the treatment of various diseases
of humans. \textit{Calendula officinalis} plant parts also possess significant
antioxidant properties. Aglycon (flavonoids), saponosides, sterol and ca-
ronenoids (lipids), isorhamnetin and querctin (glycosides of flavonol)
and organic acids in abundant amount are present in the flowers of this
plant.24 The \textit{Calendula} plant extract significantly increased the activity
of catalase, glutathione reductase and decreased the glutathione peroxi-
dase activity after oral administration has given to mice for one month.25
The butanolic fraction of plant extracts exhibit influential free radical
damaging, antioxidant potentiality and provide protection to rat liver
microsomes against lipid peroxidation.26 The phytochemical constitu-
ents of \textit{Calendula officinalis} extract exhibited high in \textit{vitro} antioxidant
potentiality and DPPH (1, 1-diphenyl 1-2- picrylhydrazyl) induced the
ROS scavenging activity along with high reducing capability.27 Propylene
glycol extracts of the flower head and petals showed that the extract
of the petals was found to be more effectual in contrast to the extract of
flower head.28 Hence the dietary supplements of \textit{C. officinalis} plant ex-
tract act as a source of natural antioxidant and may be used for providing
the protection against ageing, cancer, etc. which resulted from the cel-
ular damage created by free radicals.

\textbf{Anti-inflammatory and analgesic effect of \textit{C. officinalis}}

\textit{C. officinalis} floral extract exhibited anti-inflammatory effectiveness in
case of both carrageenins such as histamine, kinins, prostaglandins and
dextran such as mast cell degranulation. The interferon-γ (IFN-γ), hista-
mine, prostaglandins, etc. released into the circulatory system that medi-
ates the inflammatory response of host cell. \textit{C. officinalis} plant extract
decreased the level of (IFN-γ) and also retarded the cyclooxygenase 2
(COX-2) expression which also involved in anti-inflammatory respon-
ces.29 The plant extract of \textit{Calendula} significantly reduced the synthesis
of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Dur-
ing the chronic inflammation, it also retarded the suppression of neu-
traphils, eosinophils and macrophages that causes the cell damage.30,31
A large amount of flavonoids, carotenoids and lycopene (which served
as a potent antioxidant) present in the flowers of \textit{C. officinalis} the lower
concentration of lutein flavonoids showed strong inhibitory potential
against endogenous reactive oxygen species.32 Carotenoids significantly
inhibit the reactive oxygen species and lycopene greatly reduced the transcription of cytokines.\(^{42}\) Caffeic acid, chlorogenic acid and alkylamines contribute the biological activity of \(E.\) \(purpurea.\)\(^{45}\)

ECHINACEA PURPUREA (L.) MOENCH. (ECHINACEA)

Family: Asteraceae (Sunflower family)
Main use: Garden flower, cut-flower
Flowering period: April to October

<table>
<thead>
<tr>
<th>Scientific Classification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kingdom</td>
<td>Plantae</td>
</tr>
<tr>
<td>Division</td>
<td>Magnoliophyta</td>
</tr>
<tr>
<td>Class</td>
<td>Magnoliopsida</td>
</tr>
<tr>
<td>Order</td>
<td>Asterales</td>
</tr>
<tr>
<td>Family</td>
<td>Asteraceae</td>
</tr>
<tr>
<td>Genus</td>
<td>Echinacea</td>
</tr>
<tr>
<td>Species</td>
<td>(purpurea)</td>
</tr>
</tbody>
</table>

Echinacea is a herbaceous perennial herb that can grow up to 1.2m and is native of North America which was brought to Europe in the late 19's. Flower of the plant can attract birds especially the hummingbirds and butterflies and bees too. Leaves (16 x 11 cm) are lanceolate arising from the base of the stem. *Echinacea* also is known as ‘purple coneflower’ that prefers soil with neutral pH and full sun that need less irrigation. Soil type can be rocky, clayey or sandy. With a capitulum inflorescence of 6-13cm, florets are hemerophytic purplish-violet with dome-shaped disc floret.\(^{46}\)

Purple coneflower contains many constituents like polysaccharides, phenolics, caftaric acids, p-coumaric, kaempferol, glycoproteins, p-hydroxybenzoic, protocatechuc acids and the important one, cichoric acids. Along with cichioric acids plant also have rosmarinic acid, 2, 2-diphenyl-1-picyrlyhydrayzl, flavonoids and otheralkamides. Other alkaloids like- isobutylamide, 2-methylbutylamide, ntitidanin-disovalerianate, gernacatriene, etc. The plant is used as immunostimulation and immunomodulation, as well as work against the common cold and respiratory infection. *Echinacea purpurea* plant extract has antibiotic, antiviral, anti-fungal anti-cancerous potential\(^{47-48}\) and effectively used against snakebite, toothaches, cold and rabies-like diseases.\(^{49}\) *E. purpurea* roots found to be a potent reservoir of Glycoproteins, alkylamides and polysaccharides that are served as source of immunomodulatory activities.\(^{30}\)

The root extract of coneflower can be used to up-regulate some genes like- interleukin-7 receptor, Chemokine (C-C. motif) ligand-4, T-box transcription factor, integrin, cytohesin-interacting protein, interleukin-cells and cell adhesion molecule-1, etc., which are involved in cell immune system. Interestingly, the plant has a mosquitocidal property.\(^{45,46}\)

Echinacea is a plant used for ornamental purpose perfect for small gardens as flowerbeds, or alongside curbs/walkways. It is a beneficial plant in gardens having unique floral shapes. *Echinacea* is also being noted to fight against diseases of ornamental fishes as noted in *Poecilia reticulata*. So it is advised to have coneflower supplement in fish diet to increase the aquaculture production. The plant can also improve the human immune system and also be added as a diet supplement.\(^{53}\)

Immunomodulatory effects

Echinacea purpurea plant extract stimulates the functioning of the immune system such as the activation of phagocytotic activities, stimulation of fibroblast cells and increased activities of respiratory system as a consequence of which the leukocyte mobility intensified.\(^{60}\) The plant extract of *E. purpurea* enhanced the innate immunity of the organisms against the attack of pathogen by the activation of working of macrophages, natural killer (NK) cells, neutrophils and polymorphonuclear leukocytes (PMN)\(^{44}\) and due to this reason this plant is widely used for the treatment of chronic pelvic infection, disease of respiratory system and wound infection.\(^{55,56}\) The immunostimulatory and anti-inflammatory activities of *E. purpurea* mainly depends on the presence of alkamides, caffeic acid derivatives, glycoproteins, ketoalkenes and polysaccharides.\(^{54}\)

Anti-inflammatory effects

The ethanolic extract of aerial plant parts and roots of the *Echinacea purpurea* strongly reduced the concentration of collagen proteins that is induced by fibroblast cells.\(^{57}\) The extract of dried root of *E. purpurea* given to mice, effectually retarded the Carrageenan-promoted paw edema\(^{58}\) and this response may be associated with the suppression of COX-1 and COX-2 by the functioning of alkamides.\(^{59}\)

Phytochemical constituents

The Alkaloids, amides, caffeic acid derivatives and polysaccharides are the main secondary metabolites which have isolated from the plant extract of *Echinacea purpurea*. The HPLC-MS analysis strongly advocated the presence of cichoric acid and alkalide content in the plant extract.\(^{60}\) The alkaloids, quercetin, kaempferol, isorhamnetin (flavonoids), heterogenous polysaccharides, p-coumaric, p-hydroxybenzoic, protocatechuc acids (phenolic compounds) polyacetylenes, arabinogalactan protein and inulin type fraction were isolated from the juicy extract of aerial plant parts.\(^{54,61,62}\)

Antioxidant properties

The free radical destroying properties of the *E. purpurea* root extract was found to be associated with the cichoric acid and phenolic contents of this plant.\(^{63}\) The alkalide content of this plant remains inoperative against the free radicals.\(^{54,65}\) Cichoric acid acts as potent free radical scavenger and alkamides have not showed free radical destroying activities but increased the functioning of cichoric acid by regenerating the cichoric acids by donating the allylic hydrogen.\(^{65,66}\)

ACMELLA OLERACEA (L.) (TOOTHACHE PLANT)

Family: Asteraceae (Sunflower family)
Main use: Garden flower, Herbal medicine
Flowering period: August to October

<table>
<thead>
<tr>
<th>Scientific Classification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kingdom</td>
<td>Plantae</td>
</tr>
<tr>
<td>Division</td>
<td>Magnoliophyta</td>
</tr>
<tr>
<td>Class</td>
<td>Magnoliopsida</td>
</tr>
<tr>
<td>Order</td>
<td>Asterales</td>
</tr>
<tr>
<td>Family</td>
<td>Asteraceae</td>
</tr>
<tr>
<td>Genus</td>
<td>Acmella</td>
</tr>
<tr>
<td>Species</td>
<td>officinalis</td>
</tr>
</tbody>
</table>

Acmella oleracea (L.) (synonyms *Spilanthes acmella* Murr. or *Spilanthes oleracea* L.) is used as garden herbal medicines the it is used traditionally for medical purpose, especially for toothache. Chewing *A. oleracea* is a memorial experience that gives a strong prickling taste to the tongue. It’s a very unusual garden plant that looks pretty and is very easy to manage. It is believed to be native of Brazil, but its origin is not clear yet (flow-
es of India). Acmella is generally regarded as annual. The stem of the plant is smooth, reddish-green and generally prostrate (25-30 cm). Leaves are ovate with toothed margin and sharp tip. Floral heads arise singly primarily with numerous yellowish-orange disc florets. The plant can flourish in acid to neutral well-drained soil that needs moderate sunlight.

Acmella is known for its anti-viral, anti-malarial, anthelmintic, anti-nociception, anti-bacterial, anti-hyperalgesic, anti-fungal, anti-inflammatory, insecticidal and analgesic effects. Acmella has other important properties also viz. diuretic, immunomodulatory, anti-oxidant, anti-hepatotoxic, aphrodisiac and vasorelaxant. Acmella is also used against gastrointestinal troubles, including ulcers. The decoction of root can also be used as purgative. Spilanthol is the crucial alkaloid present in the plant along with cinnamaldehyde, capsaicin, stigma-steryl-3-O-b-D-glucopyranoside allyl isothiocyanate and other trienoic-acid isobutyl amides. The plant also has vanillic acid, 3-acetylureitolic acid, scopoletin, β-sitostenone, β-amyrinester, β-caryophyllene, γ-cadinene, thymol, miricilic alcohol glycosides, germacrene, trans-isoferulic and trans-ferulic acid. The floral parts and leaves of the plant contains vitamin C, phenolic compounds, polyamines, carotenoids and peroxidase activity that constitute to anti-oxidants. Acmella is also effective against malaria. The aqueous extract of aerial parts of A. oleracea showed antipyretic effectiveness against Saccharomyces cerevisiae that induced pyrexia; thereby it used as a potent remedy for high fever. It is used as an insecticide against the pest Tuta absoluta.

Acmella plant is an essential herbal plant that gives spicy tingling taste at once and then numb after sometimes. Along with curing toothache, the plant is also used for relaxing joint and muscle aches, improves muscle tiredness and relieve healing rashes on the legs. The pungent aftertaste may remain for an hour that is an excellent analgesic used by local people since time immemorial. Acmella is used by Africans and Indian for curing throat and gum infection, liver abscess, stomatitis and malaria. In countries like Mauritius, Madagascar, India, etc., leaves of A. oleracea is used as a vegetable. The most common cultured species is commonly used in Africa and India as a traditional folk medicine to cure toothache, throat complaint, stomatitis and malaria. The pharmacological activity of Acmella oleracea is presented in Table 2. The usage of Acmella oleracea in different ethnopharmacological surveys is presented in Table 3. Whereas, the detailed analysis of root and leaf phytochemicals are presented in Table 4.

TANACETUM PARTHENIUM (L.) SCH. BIP. (FEVERFEW)

Family: Asteraceae (Sunflower family)
Main use: Garden flower, dried-flower arrangements
Flowering period: July and August

Scientific Classification

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Plantae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division</td>
<td>Magnoliophyta</td>
</tr>
<tr>
<td>Class</td>
<td>Magnoliosida</td>
</tr>
<tr>
<td>Order</td>
<td>Asterales</td>
</tr>
<tr>
<td>Family</td>
<td>Asteraceae</td>
</tr>
<tr>
<td>Genus</td>
<td>Tanacetum</td>
</tr>
<tr>
<td>Species</td>
<td>parthenium</td>
</tr>
</tbody>
</table>

Table 1: Phytochemical constituents present in the different plant parts of C. officinalis L.

<table>
<thead>
<tr>
<th>Plant part</th>
<th>Phytochemicals</th>
<th>Active principle</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flowers</td>
<td>Coumarins</td>
<td>Esculetin, scopoletin, umbelliferone</td>
<td>Kerkach et al. 1986</td>
</tr>
<tr>
<td></td>
<td>Flavonoids</td>
<td>Isoquercitrin, rutin, calendoflavoside</td>
<td>Ukiya et al. 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quercetin, Isorhamnetin</td>
<td>Kurkin et al. 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isorhamnetin-3-O-β-D glycoside, Narcissin</td>
<td>Vidal-Ollivier et al. 1989</td>
</tr>
<tr>
<td></td>
<td>Terpinoids</td>
<td>Calenduloside</td>
<td>Vecherko et al. 1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calendula glycoside A, Calendula glycoside B</td>
<td>Ukiya et al. 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cornulacic acid acetate</td>
<td>Naved et al. 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Erythrodiol</td>
<td>Wojciechowski et al. 1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lupeol, Y-taraxasteol</td>
<td>Zitterl-eglsner et al. 1997</td>
</tr>
<tr>
<td>Leaves</td>
<td>Coumelynol</td>
<td>Erythrodiol</td>
<td>Nicoletta et al. 2003</td>
</tr>
<tr>
<td></td>
<td>o-pinene</td>
<td>Sabinene, limonene, α-pinene, p-cymene, nonanal, carvacrol, geraniol, nerolidol, t-muurolol, palaustron</td>
<td>Khalid et al. 2012</td>
</tr>
<tr>
<td>Root</td>
<td>Quinones</td>
<td>Phylloquinone, α-tocopherol, ubiquinone, plastoquinone</td>
<td>Janiszowska et al. 1976</td>
</tr>
<tr>
<td></td>
<td>Terpenoid</td>
<td>Calenduloside B</td>
<td>Iatsyno et al. 1978</td>
</tr>
</tbody>
</table>
Feverfew is a perennial bushy herb that grows up to a height of 60-65 cm having pungently-scented (citrus) leaves. The plant spread rapidly and produces daisy-like inflorescence with white-coloured ray and yellow-coloured disc florets. Many cultivars of Tanacetum are being developed for ornamental purpose. Feverfew is very good for relieving headache. The plant is native of Eurasia but later cultivation is spread to North America, Chile and rest of the world. The plant is drought tolerant that need less moisture but good aerated loamy acidic to alkaline soil under full sun. The yellow colour of the flower also attracts lots of butterflies and hummingbirds. Leaves are yellowish-green, hairless and pinnately dissected as in Chrysanthemum.44

Traditionally, feverfew is being used for treating headache, fever, common cold, diarrhoea, anaemia digestive problems, liver diseases and arthritis. Tanacetum has many pharmacologic properties such as anti-inflammatory, anti-cancer, anti-spasmodic, cardiotoxic, as an emmenagogue and as an enema for worms. Numerous compounds have been extracted from the plants namely - canin, artemorin, santamarine, costunolide, manolialide, artecanin, balchanin, reynosin, 3-beta-hydroxyarbusculin, 3-beta-hydroxyparthenolide, secotanaparthenolide B, 3-beta-hydroxycostunolide, costunolide, manolialide, artecanin, balchanin, reynosin, 3-beta-hydroxyarbusculin, stagiatin, 1-beta-hydroxyarbusculin, epoxyartemorin and tanaparthin-8-ol, carvacrol, pinocarvone, borneol, α-pinene, trans-myrenol acetate, chrysanthene, terpinen-4-ol, β-pinene and caryophyllene oxide and many others.85,86

Tanacetum plant deserves a spot in every garden due to its daisy appearance and bright coloured flowers. It is a good bedding plant that is used in rock gardens, cottages and along borders. The plant has long tradition medicinal properties which are also being used in Christmas trees.87

The pharmacological activity of Tanacetum partheniumis leaf extract is presented in Table 5.

Preliminary analysis of phytochemical constituent showed the presence of Alkaloids, carbohydrates, flavonoids, saponins, steroids and terpenoids but not showed the presence of tannins.88,89

Table 2: Pharmacological activity of Acmella oleracea (L.) R.K. Jansen.

<table>
<thead>
<tr>
<th>Pharmacological action</th>
<th>Plant part utilized</th>
<th>Experimentation model</th>
<th>Experimental animal</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaesthetic</td>
<td>Whole plant</td>
<td>Plexus anaesthesia in frog</td>
<td>Frog</td>
<td>Narayana et al.72</td>
</tr>
<tr>
<td>Antipyretic action</td>
<td>Whole plant</td>
<td>Yeast induced pyrexia Carrageenan activated paw oedema</td>
<td>Albino rat</td>
<td>Narayana et al.72</td>
</tr>
<tr>
<td>Anti-inflammatory activity</td>
<td>Whole plant</td>
<td>Carrageenan activated paw oedema</td>
<td>Albino rat</td>
<td>Ratansooriya et al. 200473</td>
</tr>
<tr>
<td>Anti-fungal activity</td>
<td>Flowers</td>
<td>Induction of diuresis (cold water extract)</td>
<td>Albino rat</td>
<td>Moreira et al. 198975</td>
</tr>
<tr>
<td>Diuretic activity</td>
<td>Flowers and whole plant</td>
<td>-</td>
<td>-</td>
<td>Peeris et al. 2001;76 Mondal et al. 199877</td>
</tr>
<tr>
<td>Anti-oxidant activity</td>
<td>Leaves and whole plant</td>
<td>SOD and DPPH method</td>
<td>In- vitro, no animal used</td>
<td>Ahmed et al. 2004,78 Saraf and Dixit 200279</td>
</tr>
<tr>
<td>Antimalarial and larvicidal activity</td>
<td>Splanthol (extracted from the entire plant)</td>
<td>-</td>
<td>Egg and pupae of vector</td>
<td>Wu et al. 200880</td>
</tr>
<tr>
<td>Immunomodulatory effect</td>
<td>Whole plant</td>
<td>-</td>
<td>Mice</td>
<td>Sharma et al. 201280</td>
</tr>
</tbody>
</table>

Table 3: Usage of Acmella oleracea in different ethnopharmacological surveys.

<table>
<thead>
<tr>
<th>Country/Geographic Area</th>
<th>Plant part</th>
<th>Utilization</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangladesh</td>
<td>Leaves and Flowers</td>
<td>Headache, toothache, muscle pain, cough, -</td>
<td>Tiwari et al. 201181</td>
</tr>
<tr>
<td>Brazil</td>
<td>Leaves</td>
<td>Against alcoholic hangover</td>
<td>Dubey et al. 201384a</td>
</tr>
<tr>
<td>India</td>
<td>Leaves and Flowers</td>
<td>Antitoothache and throat infection, insecticidal, Gastrointestinal disorders</td>
<td>Pathak.K. 201382</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Whole plant</td>
<td>Anticancerous agent</td>
<td>Reshmi and Rajalakshmi, 201683</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>Flower extract</td>
<td>Stimulate salivary gland tissues</td>
<td>Paurraj et al. 201387</td>
</tr>
</tbody>
</table>

Table 4: Analysis of phytochemical constituents from aqueous extract of leaf and root of Acmella oleracea (L.) R.K. Jansen.

<table>
<thead>
<tr>
<th>Phytochemical</th>
<th>Aqueous extract of leaf</th>
<th>Aqueous extract of root</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>present</td>
<td>present</td>
</tr>
<tr>
<td>Amino acids</td>
<td>absent</td>
<td>absent</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>present</td>
<td>present</td>
</tr>
<tr>
<td>Carotenoids</td>
<td>present</td>
<td>absent</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>absent</td>
<td>absent</td>
</tr>
<tr>
<td>Glycosides</td>
<td>absent</td>
<td>absent</td>
</tr>
<tr>
<td>Steroids</td>
<td>absent</td>
<td>absent</td>
</tr>
<tr>
<td>Tannins</td>
<td>present</td>
<td>present</td>
</tr>
</tbody>
</table>
Aqueous extract
present
present
present
present
absent
present
present
present
absent
present
present
absent
present
present
present
absent
present
absent
present
present

Table 5: Analysis of phytochemical constituents from aqueous and Ethanolic leaf extracts of Tanacetum parthenium.

<table>
<thead>
<tr>
<th>Phytochemicals</th>
<th>Aqueous extract of leaf</th>
<th>Ethanolic extract of leaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids (Mayers/Wagner’s/ Dragendorff reagent)</td>
<td>present</td>
<td>present</td>
</tr>
<tr>
<td>Carbohydrate (Fehlings+ Benedict's test)</td>
<td>present</td>
<td>present</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>present</td>
<td>present</td>
</tr>
<tr>
<td>Saponins</td>
<td>present</td>
<td>present</td>
</tr>
<tr>
<td>Steroids (Libermann’s / Salkowski test)</td>
<td>present</td>
<td>present</td>
</tr>
<tr>
<td>Tannins</td>
<td>absent</td>
<td>absent</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>present</td>
<td>present</td>
</tr>
</tbody>
</table>

Anti-inflammatory activities

Genus *Tanacetum* act as an inhibitor of prostaglandin biosynthesis. The aerial plant extract retarded the production of prostaglandin. Sesquiterpene lactones, abundantly present in chloroform leaf extract of this plant and significantly decreased the biosynthesis of prostaglandins in mice and human being. The lipophilic compounds found to be associated with the anti-inflammatory function as it retarded the oxidative activities of neutrophil cells of the human being. A lipophilic flavonoid (obtained from leaf, flower and seeds of this plant) called as Tanetin, inhibits the production of prostaglandin.

Chemotherapeutic effect and anticancerous effect

Parthenolide (a sesquiterpene lactone of feverfew) retarded the growth and development of bacteria, yeast and the various filamentous fungi and also act as a significant inhibitor of *Mycobacterium tuberculosis* and *M. avium*. The lactone compounds, more importantly, parthenolide exhibited the anticancerous effectivity and significantly reduced the functioning of fibroblast cells, laryngeal carcinoma, epidermoid cancer of the nasopharyngeal cavity of human being, also retarded the anti-Epstein-Barr early antigen function.

CONCLUSION

We can conclude that there is a number of ornamental plants which be used both as decoration and medical purpose as the majority of them are having antioxidant activity and can be taken in many types of beverages. Flowers of many ornamental plants are used in cooking having essential oil and alkaloids, which add a different flavour to the food. Several ornamental plants can be used as indoor plants for the removal of toxic compounds in the air inside the home, hospitals, etc. Many flowers and leaves of ornamental plants are eaten as raw in salads or can be used as garnishing curry. Many flowers like lavender, rose, chamomile, hibiscus, etc. are having sweet fragrance and can be used in perfumes, soaps, oils, etc. Many ornamental plants are being used local people for making of syrups or juices or teas for getting anti-oxidants directly from the making of syrups or juices or teas for getting anti-oxidants directly from flowers which have to be discovered yet. Future prospective of growing these ornamental plants can be vast as they not only serve an ornamental purpose but also used for commercial medicinal purpose.

ACKNOWLEDGEMENT

Authors are thankful to the anonymous reviewers for their careful reading of the manuscript and for providing insightful suggestions.

CONFLICT OF INTEREST

There are no conflicts of interest.

REFERENCES

Echinacea purpurea

and

Echinacea purpurea Poecilia reticulata

Journal of Young Pharmacists, 53. 52. 51. 50. 49. 48. 47. 46. 45. 44. 43. 42. 41. 40. 39. 38. 37. 36. 35. 34. 33. 32. 31. 30. 29. 28. 27. 26. 25. 24. 23. 22. 21. 20. 19. 18. 17. 16. 15. 14. 13. 12. 11. 10. 9. 8. 7. 6. 5. 4. 3. 2. 1.

survival of guppy (Poecilia reticulata) challenged with Aeromonas bestiarum.

