Powder Microscopic, Physicochemical, HPTLC and Antioxidant Studies on Noccik Kudinir Chooranam – A Polyherbal Siddha Formulation

Sujith Thatipelli, Shakila Ramachandran*, Achintya Kumar Mandal, Kallingil Gopi Divya, Mahesh Francis, Koppala Narayana Sunil Kumar, Ganesan Rethinam
Siddha Central Research Institute, (Central Council for Research in Siddha, Ministry of AYUSH, Government of India), Anna Hospital Campus, Arumbakkam, Chennai, Tamil Nadu, INDIA.

ABSTRACT

Objectives: To study pharmacognostical, physico-chemical, high performance thin layer chromatography and anti-oxidant activity potential of a Siddha drug “Noccik Kudinir Chooranam” (NKC). Methods: The raw drugs were collected, authenticated and the Kudinir Chooranam was prepared. Then the drug was subjected to powder microscopic diagnosis, physico-chemical parameters, Thin Layer Chromatographic photo documentation (TLC), High Performance Thin Layer Chromatographic (HPTLC) finger print profile of successive hexane, successive chloroform, successive ethanol, hydro alcohol (1:1) extract, ethyl acetate solubles of water extract, alkaloid fraction and direct ethanol along with ingredients. The methanol and aqueous extracts were evaluated for total phenol and flavonoid, DPPH radical scavenging activity and superoxide scavenging activities. Results: Different extracts of the drug showed distinct TLC and HPTLC finger print patterns which will be unique to this drug. The antioxidant activity showed significant results which are comparable to standards. Conclusion: The identified powder microscopic characters and the evolved physicochemical parameters would serve as reference tool for quality control and the antioxidant activity would find the much wider therapeutic importance of the drug.

Key words: Noccik Kudinir, Vitex negundo, Allium sativum, TLC, HPTLC, Antioxidant activity.

Correspondence
Dr. Shakila Ramachandran,
Siddha Central Research Institute, (Central Council for Research in Siddha, Ministry of AYUSH, Government of India), Anna Hospital Campus, Arumbakkam, Chennai-600106, Tamil Nadu, INDIA.
Phone: +91 044 26214925
Email: shakilasiva@gmail.com
DOI: 10.5530/jyp.2019.11.76

INTRODUCTION

Siddha system of medicine has originated from Tamil Nadu, Southern state of India. Siddhars developed this medical system who possessed supernatural powers. Medicinal plants, also called medicinal herbs, have been identified and used in traditional medicine practices since prehistoric times in Siddha system of medicine. Plants synthesis humpty number of chemical compounds for functions including defence against insects, fungi, diseases and herbivorous mammals. It is estimated that in developed countries, herbs constitutes 25% of total drugs, while in developing countries, it is 80%. Medicinal plants are considered to be safe as there is nil or minimal side effects. In line with the increased demand, the herbal products require pharmacopoeial standards through botanical and chemical characterization, for the quality control. NKC is a poly herbal siddha drug used for the treatment of inflammation, swelling, fever, pain in joint and asthma. Noccik Kudinir is a liquid form of Siddha medicine which could be prepared freshly and consumed for its therapeutic efficacy. The ingredients of the drugs are all well known; Piper nigrum and Allium sativum are available in all houses as kitchen culinary items and fresh leaves of Piper betle are available in market and only the Vitex negundo needs to be collected. In this communication, authors aimed to formulate NKC in the dried form with the composition of ingredients as per Siddha literature and subject to powder microscopy, physico-chemical parameters for the NKC (powder) and NK (liquid), TLC/HPTLC analysis, total phenol, total flavonoid, super oxide anion radical scavenging activity and DPPH radical scavenging activities.

The human system creates Reactive Oxygen Species (ROS), such as superoxide anion radical, hydroxyl radical and hydrogen peroxide by many enzymatic systems through oxygen consumption. In small amounts, these ROS can be beneficial as signal transducers. However, during oxidative stress, large amounts of these ROS may favour some human disease conditions such as cancer, hepatic diseases, cardiovascular diseases, ageing and neurodegenerative diseases.

MATERIALS AND METHODS

Preparation of NKC
Vitex negundo and Piper betle were collected from the nearby places. Allium sativum and Piper nigrum were procured from the market. All the plants were authenticated with reference to floras. The fresh leaves of Vitex negundo and Piper betle were shade dried, along with Piper nigrum and Allium sativum (fresh), powdered coarsely (NKC) and stored in an air tight container (Table 1).

Powder Microscopy
The powdered NKC was mounted in glycerine on clean microscopic slides after treating with 10% NaOH solution. Slides were observed under Nikon ECLIPSE E200 trinocular microscope and diagnostic characters were identified. Powder characters were magnified to 400X and photographed. The unique characters of individual herals were identified.
Table 1: List of ingredients and composition.

<table>
<thead>
<tr>
<th>S.No</th>
<th>Tamil name of the plant</th>
<th>Botanical name of the plant</th>
<th>Anatomical part</th>
<th>Ratio as per Literature</th>
<th>Ration taken</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nochi</td>
<td>Vitex negundo (Franch.) Rehder</td>
<td>Leaves</td>
<td>1 handful</td>
<td>13 handful</td>
<td>194 g</td>
</tr>
<tr>
<td>2</td>
<td>Milagu</td>
<td>Piper nigrum L.</td>
<td>Fruit</td>
<td>8 g</td>
<td>104 g</td>
<td>104 g</td>
</tr>
<tr>
<td>3</td>
<td>Poondu</td>
<td>Allium sativum (Sadler ex Rchb and Mill)</td>
<td>Bulb</td>
<td>4 g</td>
<td>52 g</td>
<td>52 g</td>
</tr>
<tr>
<td>4</td>
<td>Vetrilai</td>
<td>Piper betle L.</td>
<td>Leaves</td>
<td>10 nos</td>
<td>130 nos</td>
<td>209 g</td>
</tr>
</tbody>
</table>

Preparation of Kudinir

Kudinir (water extract/decoction) was prepared by adding water (100 ml) to NKC (5 g), boiled till the water content is reduced to 1/4th of the water (25 ml) and then filtered.

Chemicals, solvents and materials

All the solvents used were AR grade (Merck). For visualizing purpose vanillin (1 g) sulphuric acid in ethanol (5%) solution (VSA) was used. Standards and reagents were AR grade and all other chemicals were LR (Sigma Aldrich).

Instrument

For HPTLC, aluminium plate precoated with Silicagel 60F₂₅₄ (Merck) was used. Automatic sampler ATS4 for application on TLC plate, twin trough chamber (10 × 10 cm) for plate development, visualizer for photo documentation, Scanner 4 with win CATS software for finger prints, TLC plate heater for derivatization (CAMAG, Switzerland), Perkin Elmer’s Lambda 25 UV-Visible spectrophotometer for absorbance measurement were used.

Physicochemical parameters

All the physiochemical parameters for NKC and NK were carried out as per standard methods.³

Preparation of extracts

NKC (1 g) was extracted successively with n-hexane, chloroform and ethanol using Soxhlet apparatus, filtered, concentrated and made up to 1 ml. NKC (100 mg) was sonicated with 1 ml 1:1 aqueous ethanol, filtered and used for TLC/HPTLC. The NK was extracted with ethyl acetate repeatedly, combined together, evaporated to 1 ml. NKC (5 g) was acidified with 5% acetic acid solution and kept overnight. Then, filtered, basified with ammonia and brought the solution to basic pH. This solution was shaken with chloroform and chloroform layer was separated, dried and the yield was calculated. This residue was re-dissolved in 1 ml of chloroform for TLC of alkaloids.

Mobile Phases

TLC/HPTLC

Extracts (15 µl), in 6 different plates (6x10 sq.cm) as 8 mm bands. The plates were developed in the respective mobile phases. The developed plates were air dried, viewed under UV 254 nm and 366 nm and the images were documented followed by multi wavelength scanning at these wavelengths using deuterium lamp in absorption/reflection mode. Then the plates were dipped in a dip tank containing VSA reagent and heated at 105°C till the appearance of coloured spots. Immediately the derivatized TLC plates were photo documented and scanned at a wavelength of 520 nm for finger prints.

Antioxidant activity

The total phenol content was determined by Folin-ciocalteau method.⁶ The standard curve for total phenol using gallic acid and total flavonoid content¹ using quercetin is 2, 4, 6, 8, 10 µg/ml concentration. The sample concentration was 10 and 100 µg/ml respectively. For DPPH free radical⁸ and superoxide anion radical scavenging activities⁹ the extracts in the concentrations 1, 10, 15, 100 mg/ml, standard ascorbic acid in the concentration 25, 50, 75, 100, 200, 300, 400 and 500 µg/ml were taken.

RESULTS

The powdered compound formulation of NKC contains the characters pertaining to the bulb of *Allium sativum*, leaves of *Piper betel* and *Vitex negundo* and fruits of *Piper betle* and *Vetilai* (Figure 1). Elongated thin walled epidermis with a normocytic stomata and spiral vessel elements are the characteristic features of *A. sativum*; epidermal cells with glandular trichomes, stomata, prismatic crystals and spiral vessels are the distinctive features of *P. betel* leaves; Stone cells of hypodermis, bearer cells, perisperm cells and starch grains are the representative characters of the plant.
Physicochemical results of NKC and Kudinir are presented in the Table 2. The TLC of n-hexane extract (Figure 2) showed seven spots at Rf 0.25, 0.29, 0.34, 0.38, 0.39, 0.47, 0.52 (all green) under UV 254 nm; thirteen spots at Rf 0.15 (pink), 0.24 (pale blue), 0.30 (pink), 0.33 (pale blue), 0.36 (yellow), 0.41 (pink), 0.42 (yellow), 0.47 (pink), 0.50 (bluish white), 0.55, 0.59 (both pink), 0.61 (blue) and 0.69 (pink) under UV 366 nm; eight spots at Rf 0.03, 0.08, 0.18, 0.26 (all purple), 0.34 (yellowish brown), 0.48, 0.59, 0.97 (all violet). The TLC of successive chloroform (Figure 2) showed six spots at Rf 0.14, 0.18, 0.58, 0.74, 0.85, 0.93 (all green) under UV 254 nm; fifteen spots at Rf 0.04 (fluorescent blue), 0.06 (pink), 0.07 (brown), 0.09, 0.12 (both pink), 0.16 (brown), 0.18 (green), 0.32 (pink), 0.59 (violet), 0.64 (pink), 0.68 (violet), 0.74 (blue), 0.80, 0.85, 0.94 (all pink) under UV 366 nm; eight spots at Rf 0.03 (Bluish Green), 0.08 (blue), 0.18 (pink), 0.26 (light pink), 0.39, 0.51 (both blue) 0.57, 0.73 (both yellow) after dipping in VSR. The TLC of successive ethanol extract (Figure 2) showed 4 spots at Rf 0.05, 0.49, 0.59 and 0.66 (all green) under UV 254 nm; fourteen spots at Rf 0.03 (creamy white), 0.05 (pale pink), 0.36, 0.46, 0.51, 0.54, 0.59, 0.63 (all pink), 0.67 (sky blue), 0.70, 0.77, 0.84, 0.90, 0.99 (all pink) under UV 366 nm; nine spots at Rf 0.06, 0.35 (both violet), 0.49 (yellow), 0.51, 0.54, 0.58, 0.67, 0.78, 0.98 (all purple) after derivatizing with VSR. HPTLC profile of hexane extract (Figure 2) under UV 254 nm; major peaks (5, 7, 6 and 8) appeared at Rf 0.48 (0.48%), 0.57 (16.33%), 0.35 (50.69%); after derivatization with VSR, at 520 nm, showed major peaks (14, 11 and 9) at Rf 0.93 (33.69%), 0.96 (16.98%); after derivatization with VSR, at 520 nm, showed major peaks (10, 11, 10 and 13) at Rf 0.74 (32.42%), 0.90 (19.09%) and 0.95 (16.49%). HPTLC profile of successive chloroform extract (Figure 2) under UV 254 nm, showed major peaks (9, 11, 10 and 7) at Rf 0.72 (42.59%), 0.91 (20.30%), 0.83 (14.88%) and 0.57 (13.00%); under 366 nm, showed major peaks (12 and 13) at Rf 0.93 (33.69%), 0.96 (16.98%); after derivatization with VSR, at 520 nm, showed major peaks (10, 11 and 13) at Rf 0.74 (32.42%), 0.90 (19.09%) and 0.95 (16.49%).

The TLC of hydro alcoholic extract (Figure 3) showed six spots at Rf 0.12, 0.16, 0.45, 0.64, 0.73, 0.82 (all pink) under UV 254 nm; twelve spots at Rf 0.04 (Blue), 0.38 (Blue), 0.44 (Pale Blue), 0.47 (Pink), 0.53, 0.59 (both Pale Blue), 0.64 (Fluorescent Blue), 0.69, 0.72, 0.79 (all Pale Yellow), 0.83 and 0.88 (both Pink) under UV 366 nm; ten spots at Rf 0.06 (Violet), 0.38, 0.52, 0.54, 0.56 (all Purple), 0.66 (Yellow), 0.69, 0.78, 0.84 and 0.93 (all Purple).

The TLC of ethyl acetate solubles of Kudinir (Figure 3), therapeutic dosage form showed ten spots at Rf 0.04, 0.05, 0.07, 0.09, 0.48, 0.59, 0.66, 0.80, 0.89 and 0.95 (all green) under UV 254 nm; twelve spots at Rf 0.04 (Blue), 0.38 (Blue), 0.44 (Pale Blue), 0.47 (Pink), 0.53, 0.59 (both Pale Blue), 0.64 (Fluorescent Blue), 0.69, 0.72, 0.79 (all Pale Yellow), 0.83 and 0.88 (both Pink) under UV 366 nm; ten spots at Rf 0.06 (Violet), 0.38, 0.52, 0.54, 0.56 (all Purple), 0.66 (Yellow), 0.69, 0.78, 0.84 and 0.93 (all Purple). After spray with Dragendorff’s reagent.

HPTLC fingerprint of hydroalcohol extract (Figure 3) under UV 254nm, showed major peaks (8 and 7) at Rf 0.72 (47.29%) and 0.69 (19.60%); under 366 nm, showed major peak (10 and 9) at Rf 0.92 (46.14%) and 0.71 (19.83%); after derivatization with VSR, at 520 nm, showed major peaks (9 and 8) at Rf 0.74 (39.40%) and 0.70 (19.42%).
The DPPH radical scavenging activity of NKC extracts was detected and compared with standard ascorbic acid. The percentage of inhibition at various concentrations (Table 3) of NKC (aqueous-NKCAE and methanol-NKCME) as well as standard ascorbic acid (25-500μg/ml) were calculated and plotted in graph (Figure 5). The test drug shows higher inhibition of about 71.17% for NKCAE, 75.63 for NKCME and the standard ascorbic acid exhibits 77.66% of inhibition at 500 μg/ml sample concentration. In lower concentration 25μg/ml, the test drug shows inhibition 23.28% for NKCAE, 27.97% for NKCME and the standard ascorbic acid exhibits 38.98% of inhibition. The absorbance was measured at 517nm using UV Spectrophotometer.

The superoxide radical scavenging of the extract of NKC were detected and compared with ascorbic acid standard (Table 3). The percentage of inhibition at various concentrations (25-500μg/ml) of drug as well as standard ascorbic acid (25-500μg/ml) were calculated and plotted in graph (Figure 5). The test drug shows higher inhibition of about 63.59% for NKCAE, 68.43% for NKCME and the standard ascorbic acid exhibits 72.49% of inhibition at 500μg/ml sample concentration. In lower concentration 25 μg/ml, the test drug shows inhibition 9.92% for NKCAE, 24.24% for NKCME and the standard ascorbic acid exhibits 18.26% of inhibition. The absorbance was measured at 560 nm using UV spectrophotometer.

DISCUSSION

The main reason behind the need for the evaluation of crude drug microscopically is to rule out any adulteration and substitutions if any. Microscopic examination of the powdered compounded formulation revealed the presence of elongated epidermal cells with anamocytic stomata and spiral vessels which is in accordance to the previous studies carried out in *A. sativum*; thin epidermal cells with cyclocytic stomata, glandular trichomes with pearl glands and the prismatic crystals obtained during powder microscopy can be attributed to *P. betel* leaves and affirms the former studies broad and rectangular sclereids seen in abundance arranged laterally, bearer cells, starch grains granules both agglomerated and scattered and the vascular elements can serve as a diagnostic tool for identifying *P. nigrum* fruits and were consistent.
With previous studies, V. negundo leaf powder contains an immense amount of heteromorphic trichomes varying from simple to multicellular, short, conical, thick walled, warty and glandular trichomes and a large number of rosette crystals which were obtained in the current study and correlates to the previous studies. The morphology of the various tissues and cells of the plants are species specific and diagnostic as a result the powder microscopic characterization can be effectively used as a diagnostic tool to identify the various components of compound formulations.

The physico-chemical parameters are the basic study carried out for herbal drugs. The loss drying gives the total content of moisture and volatile oil. All the ingredients of the study drug contain volatile to quantifiable amount and the moisture of fresh garlic also led to this high value of the loss on drying. However, the volatile oil present in the ingredient will prevent the drug from deterioration. The total ash of the study drug, 6.17% represents the inorganic salts which is a primary metabolite required for physiological functions of human body. Low intake of these nutrients may lead to loss of calcium and thereby leads to even death. The water soluble ash of the study drug indicates that the 2.61% of ash are soluble in water and remaining is acid soluble ashes. The alcohol soluble and the water soluble extractives, 27.60% and 41.40% respectively are an indicative of the solubility of the secondary metabolite constituents in the high polar organic and inorganic solvents. The pH 6.49 shows that the drug is acidic despite the presence of alkaloid and would have longer shelf life. The kudinir (dosage form) also remains in acidic pH of 6.57. The specific gravity of the decoction is 1.03. The n-hexane soluble extract was calculated as 4% in which most of the non polar compounds would be extracted and the chloroform soluble extractive was evaluated as 3.50% which represents the medium polar compounds the methanol extractive indicates the presence of high polar compounds to the extent of 9%.

The non-polar compounds were separated and shown in the TLC of hexane extract, medium polar compounds in the TLC of chloroform extract, polar compounds in the TLC of ethyl acetate extract, high polar compounds in the TLC of ethanol, hydroalcohol and aqueous extracts. The amount of total phenolic content was found to be 25.23±0.3 mg/g for NKCAE and 32.32±0.406mg/g for NKCM of gallic acid equivalents. The flavonoid content was found to be 23.04±0.353 mg/g for NKCAE and 23.26±0.829mg/g for NKCM of quercetin equivalents. The inhibitory activity of DPPH radical by NKCAE (IC_{50}=196.45±0.768μg/ml) and NKCM (IC_{50}=72.70±0.174μg/ml) was better when compared to the scavenging activity of ascorbic acid (IC_{50}=78.2±0.272μg/ml). The superoxide radical scavenging activity of ascorbic acid (IC_{50}=123.79±0.279 μg/ml) was better when compared to NKCAE (IC_{50}=179.24±0.345 μg/ml) and NKCM (IC_{50}=196.45±0.768μg/ml).

The phytochemical literature of the ingredients shows that the drug has variety of phytoconstituents. The ingredients were reported with many pharmacological activities. Previous epidemiological studies report that these antioxidant compounds also possess anti inflammatory, antiatherosclerotic, antitumor, antimutagenic, anticarcinogenic, antibacterial and antiviral activities to greater or lesser extent. Hence the study drug would have anti-inflammatory, analgesic, anti-tumour, anti cancer, anti-arthritic and anti-rheumatic activities.

CONCLUSION

The identified microscopic characters would help to check the NKC drug for proper inclusion of individual ingredients. The physicochemical results, TLC/HPTLC of different extracts of NKC and Kudinir would be useful for the quality control investigation of the drug. As reported by earlier researchers, as the drug is exhibiting the DPPH free radical scavenging and superoxide anion radical scavenging activities, the drug leaves broad scope for the pharmacologist for further studies. For facilities and support.

ACKNOWLEDGEMENT

Authors are thankful to The Director General, CCRS and The Assistant Director I/c, SCRI.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ABBREVIATIONS

NaOH: Sodium hydroxide; DPPH: α, α – diphenyl-β-picrylhydrazyl.

REFERENCES

Thatipelli, et al.: Pharmacognostic and Antioxidant Studies on Noccik Kudinir Chooranam

1979;161.

