Micro-Raman Spectroscopy, Colour Stability, Roughness and Mass Variation of Removable Partial Dentures after Cleansing with White Wine Vinegar

Alene Silva Melo Araújo1, Paula Ramalho Franca Flores1, Victor Pinheiro Feitosa8,1,2, Lídia Audrey Rocha Valadas1, Diego Martins de Paula1,2, Nicole de Mello Fiallos, Igor Ribeiro Rola1, José Antero Soares Rola1, Ana Cristina de Mello Fiallos1
1Department of Restorative Dentistry, Federal University of Ceará, Fortaleza, BRAZIL.
2Paulo Picanço College of Dentistry, Fortaleza, BRAZIL.
3Dentistry College, University of Fortaleza, Fortaleza, BRAZIL.

ABSTRACT
Objective: The aim of this study was to analyze the in vitro effect of White Wine Vinegar (WWV) on surface properties of removable partial dentures (RPD) components. Methods: Thirty specimens of one artificial teeth and a slab of cobalt-chromium alloy for RPDs were prepared. Specimens were distributed randomly in 3 groups (n=10): distilled water (negative control), WWV and CoregaTabs® (commercial control). Before and after immersion regimens, the analyses undertaken were colour stability assessed using spectrophotometer, mean roughness surveyed by perfilometry, mass variation using an analytical balance and surface composition assessed by Raman micro-spectroscopy. The data were statistically analyzed by repeated-measures ANOVA and Tukey test (p<0.05). Results: No statistically significant differences were observed between the treatments on roughness and colour change. Distilled water increased the weight of specimens whilst CoregaTabs and WWV reduced significantly the mass (p<0.05). In the Raman analysis, reduction of Co-Cr peak at 470 cm⁻¹ was detected after immersion in distilled water and CoregaTabs, demonstrating signs of alloy degradation. Peak at 2430 cm⁻¹ after immersion in distilled water was observed. Conclusion: WWV at 30 vol % is a promising low-cost alternative for the daily cleaning of removable dentures without altering surface properties and composition of removable partial denture components.

Key words: Removable denture, Vinegar, Raman spectroscopy.

Correspondence
Dr. Victor Pinheiro Feitosa, Dental School – Federal University of Ceará, Rua Monsenhor Furtado S/N, Bairro Rodolfo Teófilo, Fortaleza – CE, BRAZIL.
Phone: +55 85 997361292
Email: lidiavaladas@gmail.com
DOI: 10.5530/jyp.2018.10.88

INTRODUCTION
Despite advances in dental implants, nowadays there is still a great number of rehabilitated people with removable dentures.1 Removable Partial Dentures (RPD) with clasps are widely used in developing countries because they are a simple and accessible method for the replacement of natural teeth for patients with low income.2 Given the large number of users of RPD, the correct cleaning of these prostheses becomes a relevant subject in the context of oral and systemic health.1,3-4 Indeed, this issue is of great relevance, once most of these patients are not able to purchase the expensive commercial RPD cleaning products.

RPDs as well as dental surfaces are prone to plaque deposition;4 therefore, constant education and care should be undertaken by the dentists in order to avoid damage to the soft tissues and to prosthetic components. The literature points out to a wide variety of materials and techniques for prosthetic hygiene such as: a) mechanical methods with by using toothbrushes and toothpastes or soaps, ultrasonic devices and microwave and b) chemical methods classified in alkaline peroxide, alkaline hypo-chlorite, acids, disinfectants and enzymes.6,7 Most investigations described cleaning methods for total removable dentures, which have no metallic component. Therefore, the outcomes cannot be extended to removable partial dentures with clasps that possess acrylic resin and metal.1 The ideal sanitizer product must be easy to use, effective in removing inorganic and organic deposits and stains, antimicrobial, non-toxic to patients, low cost and inert to prosthetics materials.8-10 In recent studies depicting promising products for the hygiene of removable dentures, White Wine Vinegar (WWV) solution might be highlighted for the disinfection of total dentures.11-12 These studies indicate the WWV as an effective alternative for the cleaning of removable dentures due to its fungicide activity, without causing damage to acrylic resin prosthesis.11 However, the effects of WWV on the components of RPDs with clasps simulating hygiene procedures have not been evaluated yet to our knowledge. Thus, the aim of this study was to evaluate the effect of WWV solution on the roughness, colour stability, weight loss and surface composition of RPD components (metal, acrylic resin and artificial teeth). The hypothesis tested is that WWV solution induces no adverse effects on the surface properties of RPD compounds.

MATERIALS AND METHODS
The materials used in this investigation were a cobalt-chromium alloy (Degudent®, Dentsply Brazil, São Paulo, Brazil), thermo-polymerized acrylic resin (Lucitone 550, Degudent® GmbH, Berlin, Germany), acrylic artificial tooth (Vipi, Pirassununga, Brazil), CoregaTabs (commercial and positive control, Stafford-Miller Industry, Rio de Janeiro, Brazil),
white wine vinegar (Minhoto, Raymundo da Fonte Industries, Paulista, Brazil) and distilled water as negative control.

To simulate a RPD with clasps, 30 rectangular specimens were prepared in a dental prosthesis laboratory (CLO Bill Rôla, Fortaleza, Brazil) measuring 38 mm x 18 mm x 4 mm consisting of: cobalt-chromium alloy slab and acrylic artificial tooth embedded in thermo-polymerized acrylic resin with reduced dimensions (Figure 1).

The experimental protocol used was based on a previous one described by Paranhos et al. 2007 with modifications. Initially, the thermo-polymerized acrylic resin rectangles (Lucitone 550) were obtained from gypsum casts made of muffles. To obtain the molds, rectangular arrays of silicone were made measuring 38 mm x 18 mm x 4 mm with a lateral rectangular cavitation of approximately 8 mm x 5 mm x 3 mm. The matrices were included in type IV stone gypsum (Densite, Dentsply, Petrópolis, Brazil) and after setting the gypsum, its surface was covered with insulating (Cel-Lac, SS White, Rio de Janeiro, Brazil). The counter muffle was filled with another portion of plaster gypsum that was poured into matrices. Then, the muffle was pressed for 40 min and then opened for removal of matrices. The acrylic resin was manipulated according to the manufacturer’s instructions and inserted into the muffle in plastic stage of setting. After the setting and thermal regimen, rectangles were removed for finishing and polishing. For the metal portion of the specimens, wax patterns (GeoRenfert, GmbH, Hilzingen, Germany) were prepared in the lateral cavity of resin rectangles. Therefore, the wax was liquefied in electric plasticizing (BRAVAC, São Paulo, Brazil) at 70°C and then poured with dropper into respective space at each resin rectangle.

After cooling, wax patterns were removed from and the fused Co-Cr alloy was manufactured by conventional casting methods (loss wax protocol). Square metal slabs were obtained and polished in polishing machine AROPOL-E (AROTEC, Cotia, São Paulo, Brazil) with increasing grits sandpapers (Norton, Saint Gobain, France) at 300 rpm for 40 sec and washed with distilled water in ultrasonic bath between each paper and at the end of the polishing. Afterwards, the metal slabs were set into the cavity of each resin rectangle with 1 drop of cyanoacrylate glue (Super-bonder®, Henkel, São Paulo, Brazil).

The final procedure to produce the RPD with clasps specimens was the incorporation of acrylic tooth to the resin rectangles. The lingual surface of each tooth was abraded and flattened; they were fixed with the cyanoacrylate glue on the opposite side of the rectangular acrylic resins. The specimens were randomly identified and divided into three groups (n=10), with 30 times (30 cycles) immersion in each solution: 1) WWV: White Wine Vinegar solution diluted at 30 vol % in distilled water. The specimens were immersed in 200 mL of WWV solution for 30 min; 2) CT: Corega Tabs (CT) solution (200mL) was prepared in accordance with the manufacturer’s recommendations and the specimens were immersed for 5 min; 3) DW: The specimens were immersed in 200 mL of distilled water (DW) at room temperature for 30 min. After immersion, the specimens of all groups were washed in tap water for 60s and re-immersed in each refreshed solution for a further cycle of simulated chemical cleaning.

Surface Analyses
Specimens were analyzed before (T0) and after the immersions (T1). To check possible color changes of the specimens, the reflectance spectrophotometry technique was used with a digital spectrophotometer (VITA EasyShade® 4.0, VITA Zahnfabrik, BadSäckingen, Germany). The readings were made at the center of buccal surface of each tooth and the spectrophotometer was calibrated before each reading.

To detect changes on roughness, Hommel Tester T1000 Perfilometer (Hommelwerke, GmbH, Schwennin-gen, Germany) was employed. Readings of mean roughness (Ra) were performed on the metal, acrylic embedding resin and artificial tooth with three readings (to obtain the mean) at each substrate of each specimen (n=10).

The chemical composition of the specimens’ components (metal, acrylic resin and artificial tooth) was performed by means of Raman spectrophotometer (Xplora, Horiba, Paris, France) containing argon laser with 532nm wavelength and 0.32 mW laser power. Magnifying 100X lens (Olympus) were used to carry out the focus in regions to be evaluated at each specimen. The Raman vibrational spectrum was obtained in the range of 100 cm⁻¹ to 4000 cm⁻¹ with 10s exposure and 3 accumulations. All spectra were post-processed with normalization and baseline correction.

Finally, the evaluation of specimens’ mass changes before and after immersions was undertaken by weighing each specimen in an analytical balance MARK 210A (BEL Equipamentos LTDA, Piracicaba, Brazil), with a 0.1mg sensitivity. After each analysis, the balance has been properly calibrated.

Statistical analysis
After passing normality and equal variance tests (p>0.05), the data obtained on roughness, colour stability and mass variation experiments were analyzed by means of repeated measures ANOVA and Tukey’s test (p<0.05) using SigmaStat 3.5 software (Systat Inc., San Jose, USA). Shade units of color analysis were transformed into numeric data according to the protocol of Peña and Ratón 2014 in order to perform parametric statistical analysis.

RESULTS
Color stability
The outcomes of color assay are presented in Table 1. Although there was some color change after immersions (especially for distilled water), no statistical differences were found (p>0.05). The mean color of all teeth specimens was A3° varying between C2 (7 in the scale of numbers) and B3 (represented by number 11).

Surface roughness
Table 2 presents the mean roughness in each period (T0 and T1). The statistical analysis depicted no difference between the cleaning solutions (p>0.05). Although the increased surface roughness after immersions in all solutions, such augment was not statistically significant.

Surface Composition
The micro-Raman spectra are shown in Figure 2. The analyses of Co-Cr alloys depicted intense peak at 470 cm⁻¹ corresponding to Co-Cr metallic bond. This peak was present both before and after immersions in the three solutions (Figure 2A). However, it was less intense after immersion in distilled water and Corega Tabs. Furthermore, after distilled water immersion, a peak ascribed to chromium carbonate was identified at 2430 cm⁻¹ (Figure 2B). The evaluation of thermo-polymerized acrylic

Table 1: Color analysis of the artificial teeth. Colors were shown in mean shade unit and representative numbers (average ± standard deviations).

<table>
<thead>
<tr>
<th>Color average (Shade unit)</th>
<th>Before immersion</th>
<th>After Immersion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>A3 (8.6±4.0)</td>
<td>B3 (11.4±3.9)</td>
</tr>
<tr>
<td>Corega</td>
<td>A3 (9.3±5.6)</td>
<td>D3 (9.6±4.8)</td>
</tr>
<tr>
<td>Vinegar</td>
<td>C2 (7.2±4.2)</td>
<td>A3 (9.1±6.1)</td>
</tr>
</tbody>
</table>

° There was no statistical difference between the immersion solutions before (p>0.05) or after (p>0.05) the immersion.
resin depicted for all groups a peak at 800 cm$^{-1}$ ascribed to PMMA polymer. Also, after immersion in distilled water, the spectrum of the acrylic resin presented an additional peak at 2430 cm$^{-1}$ (Figure 2C) showing deposition of chromium carbonate. The results of Raman analyses of artificial teeth were very similar to those of acrylic embedding resin thereby demonstrating the peak at 800 cm$^{-1}$ in all conditions and the presence of the additional peak at 2430 cm$^{-1}$ only for specimens immersed in distilled water (Figure 2D).

Mass Variation

Specimens’ mass outcomes did not show statistically significant difference between the solutions ($p>0.05$). However, after immersions, there has been an increase in the mass of specimens ($p<0.001$) in contact with distilled water and significant reduction for the CoregaTabs® and White Wine Vinegar (WWV). Table 3 presents the results obtained in the analysis of specimens’ mass.

DISCUSSION

Few *in vitro* studies have investigated the use of chemical cleansers with focus on possible adverse effects on the components of the RPDs with clasps, especially on their metal Co-Cr structure. Nowadays, there is great interest for substances economically viable for all patients to assist in the cleaning of dentures. This study was conducted to evaluate the effects of white Wine Vinegar influence on the components of RPDs with clasps, since such solution has demonstrated to be an efficient cleanser for dentures, due to its antimicrobial activity. Indeed, WWV solution displayed the slighter effects on surface properties of substrates evaluated in the present study. Nevertheless, due to the minor effects on mass change, the study hypothesis that WWV induces no negative effects on RPDs components needs to be rejected. In a previous investigation, WWV presented positive results in 50vol% and neat concentrations for the disinfection of removable total dentures (RTDs) thereby showing antifungal action against strains of *Candida albicans*. Those concentrations were different from the one used in this study (30%), which also presented antimicrobial activity in the study of Andrade, *et al.* Their investigation evaluated the effects of vinegar solutions at 10% and 30% on *C. albicans in vitro* attached on the surface of acrylic resin of RTDs and it was observed significant reduction in the log UFC/mL of *C. albicans* on the comparing to the control. Therefore, we

<table>
<thead>
<tr>
<th>Roughness (Ra)</th>
<th>Before immersion</th>
<th>After Immersion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal</td>
<td>Resin</td>
<td>Tooth</td>
</tr>
<tr>
<td>Water</td>
<td>0.0136±0.0028</td>
<td>0.0103±0.0009</td>
</tr>
<tr>
<td>Corega</td>
<td>0.0143±0.0048</td>
<td>0.0112±0.0021</td>
</tr>
<tr>
<td>Vinegar</td>
<td>0.0118±0.0033</td>
<td>0.0103±0.0009</td>
</tr>
</tbody>
</table>

*Different capital letters indicate statistical difference ($p<0.05$) between before and after immersion. Analyses among solutions at each period did not show statistical differences ($p>0.05$).
established in the present study to assess the immersion in 30% WWV solution, 30 min/day for 30 days as undertaken previously.3,11 Lower concentration (2.5%) of vinegar was also evaluated on strains of \textit{C. albicans}.21 The authors surveyed surface roughness of two denture base acrylic resins and found higher roughness caused by vinegar at 2.5% for Acropars resin, which was significantly higher than other solutions tested (0.5% sodium hypochlorite, 5% sodium bicarbonate and CoregaTabs*). The previous report21 showed contrasting results in comparison with the present outcomes. Such difference may likely be explained by the different brands of resin used (the other acrylic resin was not affected by vinegar solution) and the common vinegar (more aggressive) employed. White Wine Vinegar possesses lower concentration of acids in comparison with common vinegar. Regarding the roughness of acrylic resin, the study of Da Silva, \textit{et al.}22 used 100% vinegar as a disinfectant solution and did not depict significant roughness change for vinegar immersion, corroborating with the findings of the present study. The dental materials roughness analysis is of foremost importance, because the surface roughness may affect directly or indirectly the adherence of microorganisms.3 Felipucci \textit{et al.}3 found the presence of metal staining only in samples immersed in sodium hypochlorite with no staining for immersions in distilled water and CoregaTabs* solution. Visual inspection (10X magnification stereomicroscopy) of specimens in the present study showed no signs of metal staining after all immersion regimens.

To our knowledge, there were no investigations that analyzed the influence of chemical cleaning solutions on the color of artificial teeth in removable partial dentures with clasps. The studies have emphasized, over the years, the colour changing on acrylic resin, likely with the use of sodium hypochlorite as cleanser and its whitening action on acrylic resin. In this study, we analyzed the WWV action on artificial teeth colour and, although there was some color change, that was no statistically significant differences after immersions in distilled water, Corega tabs and WWV solution. Further studies in this direction should be designed to assess color changes after longer periods of immersion in different cleansers.

Concerning the mass variations, an increase in the weight of specimens immersed in distilled water and a decrease in those immersed in CoregaTabs* and WWV solutions were observed (Table 3). Corroborating with our results, other studies also observed an increase and decrease in the mass of the specimen immersed in distilled water and CoregaTabs* solution respectively.3,4,11,13 Indeed, water sorption promoted by distilled water and chromium carbonate deposition (Figure 2B) might be suitable explanations for the increase, whilst the alkaline solution of CoregaTabs* may facilitate the release of linear polymers thereby reducing the weight. In the case of WWV solution, it was possible to observe a discrete mass reduction, similar to CoregaTabs*. The same interpretation with acidic release of linear polymer chains might be related to WWV solution. In order to check possible changes in the chemical surface composition of the specimens, we employed Raman spectroscopy (RS). Literature reveals that the RS is highly reliable method to evaluate the composition of dental materials. Moreover, its use offers advantages as it dispenses preparations or manipulations of all kinds of specimens. In addition, changes in materials may suggest the occurrence of important chemical phenomena such as corrosion in the case of metals where the release of ions as a function of the pH of the medium, with the formation of a protective oxide film on the surface.19,23 It was found in the micro-Raman analysis that Co-Cr alloys depicted the presence of a peak at 470 cm-1 before and after immersion in all solutions. According to the literature, this peak refers to the Co-Cr metal bond.24 However, the specimens’ analysis after immersion in distilled water revealed the noteworthy presence peak at 2430 cm-1. According to the literature,25 this peak is

CONCLUSION

Within the limitations of the present investigation, it may be concluded that white Wine Vinegar solution is a feasible alternative to the hygiene of removable partial dentures with clasps, when diluted at 30% concentration and for 30 min per day in the form of soaking solution. However, more studies are needed in order to clarify the action of acetic acid from WWV on weight loss of specimens.

ACKNOWLEDGEMENT

Sincere thanks to the Laboratory of Postgraduate Research and Laser Centre in Dentistry Bill Rola, places of this research.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Notes:

- Vol 10, Issue 4, Oct-Dec, 2018
- 402